Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore
نویسندگان
چکیده
In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the 'α3/α5' interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known 'α6:α6' interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH.
منابع مشابه
Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis.
Mitochondrial outer membrane permeabilisation (MOMP) is the point of no return in many forms of apoptotic cell death. The killing effect of MOMP is twofold; it both initiates a proteolytic cascade of pro-apoptotic enzymes and damages mitochondrial function. Accordingly, prevention of MOMP can rescue cells from death. It is clear that either Bak or Bax, which are Bcl-2 family members, are requir...
متن کاملBAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove.
BAK and BAX are the essential effectors of apoptosis because without them a cell is resistant to most apoptotic stimuli. BAK and BAX undergo conformation changes to homooligomerize then permeabilize the mitochondrial outer membrane during apoptosis. How BCL-2 homology 3 (BH3)-only proteins bind to activate BAK and BAX is unclear. We report that BH3-only proteins bind inactive full-length BAK at...
متن کاملThe voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death.
Research over the last decade has extended the prevailing view of mitochondria to include functions well beyond the critical bioenergetics role in supplying ATP. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organelle communication, aging, many diseases, cell proliferation and cell death. Apoptotic signal transmission to the mitochondria results in t...
متن کاملBax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice
A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilita...
متن کاملA New View of the Lethal Apoptotic Pore
Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research effor...
متن کامل